数列
定义:
$f:$$\Bbb N_+$$\rightarrow$ $\Bbb R$,可写为 $a_1,a_2,…,a_n,…,$或$\lbrace a_n\rbrace.$
收敛数列:
当$n$取无穷大时,$a_n$无限接近于常数$a$.
设$\lbrace a_n\rbrace$为数列, $a$为定数,若 $\forall \varepsilon$, $\exists$正整数N,St. $n>N$时,有
$$\mid a_n-a\mid<\varepsilon$$
则称数列$\lbrace a_n\rbrace$收敛于$a$,定数$a$称为数列$\lbrace a_n\rbrace$的极限,记作$$ \lim_{n \to +\infty}a_n=a \quad or \quad a_n \to a(n\to \infty) $$
*证明
$\lim\limits_{n\to\infty}\frac1{n^a}=0 $$\quad(n为正数)$
$n>N=\frac1{\varepsilon^\frac1a}+1$
$\lim\limits_{n\to\infty}\frac{3n^2}{n^2-3}=3$
$\frac{3n^2}{n^2-3}>$
$\lim\limits_{n\to\infty}q^n=0$
$\lim\limits_ {n \to \infty}a^{\frac{1}{n}}=1\quad (a>0)$
$\lim\limits_ {n \to \infty}n^{\frac{1}{n}}=1\quad (a>0)$
令$n^{\frac{1}{n}}=1+h_n$,则 $n=(1+h_n)^n>\frac{n^2-n}{2}h_n^2$, 则$h_n<{\frac{2}{n-1}}^\frac12$,$1+h_n<$
$\forall\varepsilon,$
$\lim\limits_ {n \to \infty}\sqrt n(\sqrt {n+1}-\sqrt n)=\frac12$
解:$\sqrt n(\sqrt {n+1}-\sqrt n)$$=\frac{\sqrt n}{(\sqrt {n-1}+\sqrt n)}=$$\frac{1}{(\sqrt {\frac{n-1}{n}}+1)}=\frac12$
有界单调数列一定有极限