偏微分方程

这是台大黃宏斌教授的pde的一次小作业,主要是pde的热传导方程.我把它放在这里,欢迎学弟/妹(长/姐)取用.

1.PDE $\qquad u_t=\alpha^2u_{xx}\qquad0<x<1\quad0<t<\infty$
$$BCs\quad \begin{cases} u(0,t)=0\ u(1,t)=0 & \end{cases}0<t<\infty$$$$IC\quad u(x,0)=\phi(x)\quad 0\leq x\leq 1 $$
解:Step1.$$设:
,u(x,t)=X(x)\cdot T(t)$$

$$则:X\dot{T}=\alpha^2TX^{‘’}$$

$$令:\frac{;X^{‘’}}{X}=\frac{\dot{T}}{\alpha^2T}=K=-p^2$$

$$则:\begin{cases}X^{‘’}+p^2X=0 \ \dot{T}+p^2\alpha^2T=0 \end{cases} $$

关于$K=-p^2$的证明:

$$\because u(0,t)=0\Rightarrow X(0)T(t)=0\Rightarrow X(0)=0$$

$$\quad u(1,t)=0\Rightarrow X(1)T(t)=0\Rightarrow X(1)=0$$
1.若$K=p^2>0$;
$;;$则:$X^{‘’}-p^2X=0$
$;;$则:$X = C_1 e^{px} + C_2 e^{-px}$
$;;$代入$\begin{cases}X(0)=0\ X(1)=0\end{cases}\quad $得$X=0,故不成立$
2.若$K=0$;
$;;$则:$X=0,故不成立$
3.若$K=-p^2<0$;
$;;$则:$X^{‘’}+p^2X=0$
$;;$则:$X = C_1 cospx + C_2 sinpx$
$;;$代入$\begin{cases}X(0)=0\ X(L)=0\end{cases}\quad $得$\begin{cases}C_1=0 \ C_2sinLp=0\end{cases}$
$;;$故$Lp=n\pi,p=\frac {n\pi}{L}$
$;;$则:$X_n(x)=C_2sin\frac {n\pi}{L}x,\quad n为整数$

$$令C_2=1,则:X_n=sin,n\pi x$$

Step2.

$$\dot{T}+\alpha^2p^2T=0$$

$$令:\alpha^2p^2=\alpha^2(\frac{n\pi}{L})^2=(\frac{\alpha n\pi}{L})^2=(\alpha n\pi)^2={\lambda_n}^2$$

$$\dot{T}+{\lambda_n}^2T=0 $$

$$则:T_n={C_n}^{e^{-\lambda_n^2t}}$$

$$特征函数:u_n=X_nT_n={C_n}^{e^{-{\lambda_n}^2t}}sin,n\pi x$$
Step3.$$通解,u(x,t)=\sum_{n=1}^\infty {C_n}^{e^{-{\lambda_n}^2t}}sin,\frac{n\pi}{L} x$$

$$\because u(x,0)=\phi(x),L=1$$

$$\therefore\phi(x)=\sum_{n=1}^\infty C_nsin,n\pi x$$

$$\therefore C_n=\frac2L\int \phi(x)sin,\frac{n\pi}{L} {\rm d}x$$

附:$F=f(x)$
$$p为任一常数,求下面两个方程分别的通解$$

$$\frac{d^2F}{dx^2}-p^2F=0$$

$$\frac{d^2F}{dx^2}+p^2F=0$$

2.PDE $\qquad U_t=\alpha^2U_{xx}-S_t\qquad0<x<L\quad0<t<\infty$
$$BCs\quad \begin{cases} U(0,t)=0 \ U_x(L,t)+hU(L,t)=0 & \end{cases}0<t<\infty$$$$IC\quad U(x,0)=\phi(x)-S(x,0)\quad 0\leq x\leq L $$
Solve:
3.PDE $\qquad u_t=\alpha^2u_{xx}\qquad0<x<1\quad0<t<\infty$
$$BCs\quad \begin{cases} u(0,t)=0 \ u_x(1,t)+hu(1,t)=0 & \end{cases}0<t<\infty$$$$IC\quad u(x,0)=x\quad 0\leq x\leq 1 $$
4.PDE $\qquad u_t=\alpha^2u_{xx}\qquad0<x<\infty\quad0<t<\infty$
$$BCs\quad u(0,t)=A\quad 0<t<\infty$$$$IC\quad u(x,0)=0\quad 0\leq x\leq \infty $$
5.PDE $\qquad u_t=\alpha^2u_{xx}\qquad-\infty<x<\infty\quad0<t<\infty$
$$IC\quad u(x,0)=\phi(x)\quad -\infty\leq x\leq \infty $$
6.PDE $\qquad u_t=\alpha^2u_{xx}\qquad0<x<\infty\quad0<t<\infty$
$$BCs\quad u_x(0,t)-u(0,t)=0\quad 0<t<\infty$$$$IC\quad u(x,0)=u_0\quad 0\leq x\leq \infty $$
$$ f(n)= \begin{cases} n/2, & \text {if $n$ is even} \ 3n+1, & \text{if $n$ is odd} \end{cases} $$
7.PDE $\qquad u_t=u_{xx}\qquad0<x<1\quad0<t<\infty$
$$BCs\quad \begin{cases} u(0,t)=0 \ u(1,t)=f(t) & \end{cases}0<t<\infty$$$$IC\quad u(x,0)=0\quad 0\leq x\leq 1 $$

评论

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×